ASYMPTOTIC OF THE FLOW UPON SHOCK
INCIDENCE ON A WEDGE CAVITY

Ya. M. Kazhdan UDC 539.3:534.1

The asymptotic of the motion originating because of shock incidence on a wedge cavity in a
metal is investigated as the wave amplitude tends to zero. It has been shown in [1] that the
flow is hence divided into two domains. The principal term governing the flow in the first
domain agrees with the acoustic approximation. The flow in the second domain is described
by incompressible fluid equations in the principal term. Determination of the flow in the
second domain is reduced herein to the solution of a singular nonlinear integral equation.

A numerical solution is found for a series of values of the cavity aperture.

1. A shock, parallel to the xz plane and with constant pressure p = p;, proceeds over a metal medium
with a cutout wedge cavity whose edge coincides with the z axis, the plane of symmetry with the yz plane,
and whose aperture is 2v (y< 7/2). The equation of state of the medium is -

p =" (555 —1) a.1)

The velocity ahead of the wave is u = 0, the pressure is p = 0, the density is p = pg, the speed of sound
is ¢ = ¢j, the relative density is 6 =1, and the entropy quantity is S =1. At the time t = 0, the shock front
intersects the edge of the cavity. For t >0 the flow in the metal becomes two-dimensional and self-similar,
i.e., the gasdynamics functions depend on two variables ¢ = x/t, n = y/t. Since a plane shock of constant
amplitude moves over a substance at rest, then the flow behind the shock front will also have potential. By
virtue of the self-similarity, let us represent the flow potential as

o (z, y, 1) = tD(E, 1) 1.2)

Determining the flow originating behind the shock front is possible by numerical integration of the
appropriate system of partial differential equations with two independent variables. However, under an es-
sential assumption about the smallness of the ratio

& = p1/ F'oco2 <'1 (1.3)

the asymptotic of the flow as ¢ —0 can be obtained. This problem was considered in [1] from this viewpoint.
Starting from the smaliness of the value of ¢, the acoustic approximation was written down. It turned out
that it could be an approximation of the flow only in a domain I, where

ert L, r=V8+n ¢, a=x/2(n—1) (h<a<) -4

The asymptotic of the flow in this domain as r—0 appears thus:

D =29gelcos aycos a(n —O)y*/(a—1m
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8§ —1=~decos aycos a(m —0)r*/ (o —1) xn (1.5)

0 =arc tg £E/1.
In order to continue the solution into the domain II, where

er~2zz 0 (1) (1.6)

a change of variable was performed which took account of the definition (1.6) of the domain II as well as the
asymptotic (1.5)

O = 82/(2_'1)@17 E = gl/{2-a) gl’ M= (.;1/(2'-Gl)rh7 r= 81/(2—&)31
—1=g2/@NA, a.7)

A domain of finite values of R, hence, corresponds to the domain II, and the passage into domain I
corresponds to the passage to the limit R—~«. As follows from substituting (1.7) into the system of gas-
dynamics equations, the function &;{¢;, n;) should satisfy the Laplace equation in the principal term as £—0,
and for finite values of R, i.e., the flow in this domain is described in the principal term by incompressible
fluid equations. The determination of the asymptotic of the flow in this domain as £ —0 is the purpose of
the present paper.

Because of the flow symmetry, it is sufficient to examine a domain bounded by the axis of symmetry
and an unknown free boundary m = ni(£1), &1 =0, after which the problem can be formulated thus: for a
given angle vy, find the equation of the free boundary m = n(£1) and the harmonic function & (¢4, ), satis-
fying the boundary conditions on the free boundary

dig _ Dy —m (t.8)

dEr q}lix —E1

PG, m(E))=20 1.9)

and on the axis of symmetry
(1.10)
qjlil = O
Moreover, for "merger" with the acoustic approximation as R— , the asymptotic

@, =~ 27 "¢y cos oy cos ot (1 — 6) R*[(a —1)x (1.11)

should hold, and on the free boundary

' (1.12)
Ei=tg Y1

The subscript 1 is henceforth omitted.

2. The problem just formulated becomes similar to the problem of uniform submersion of a wedge
in a half-space occupied by an ideal incompressible fluid by a substitution. Z. N. Dobrovol 'skaya solved the
problem about a wedge by reducing it to seeking the solution of a certain singular nonlinear integral equa-
tion {2, 3]. This method is also used herein.

The complex potential
FO=0@E&n+iV(E n 2.1)

is considered in the plane of the complex variable £ = £ +in.

The flow domain in the ¢ plane is represented as the image for the conformal mapping ¢ = £(w) of the
upper half-plane of the complex variable w = u+iv. This mapping is constructed so that the origin (u = 0,
v = 0) goes into the vertex of the free boundary £ (¢ = 0, n = n4), the real positive half-axis (u =0, v =0)
goes into the axis of flow symmetry (¢ =0, 5 < nA), the negative half-axis (u < 0, v = 0) goes into the free
boundary, and the point w = « into the point ¢ = =. Taking account of the asymptotic (1.12), it hence fol-
lows that

arg ' (u) = —mn /2 for 0Cu<< oo (2.2)
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arg ' (w)—>—(n/24+ 9y foo u—>— oo (2.3)

(here, and henceforth, the prime ' denotes the derivative).

The potential F(£) hence, goes over into the function F(w) defined in the upper w half-plane. Relations
connecting the functions ¢(w) and F(w)

Re [iF" (w)] = Re [il’ )L ()] for —oo<u<<O (2.4)
p=0 for —oo<u<<O (2.5)
follow from the boundary conditions (1.8) and (1.9),
ReliFF ()] =0 for. 0<u< o (2.6)
follows from the flow symmetry condition (1.10), and finally, the asymptotic
F (1) = {200 cosay (if)" /(@ — 1) for {—> o0 (?.7)

following from (1.11) should be satisfied.

Therefore, the problem can be formulated thus: determine two analytic functions ¢(w) and F(w) by
means of the boundary conditions given on the real axis of the w plane and by the asymptotic at infinity.
The determination of these functions allows one degree of arbitrariness: the variable w can be multiplied
by an arbitrary positive constant.

The potential F(w) can be eliminated from the boundary conditions, after which, a boundary-value
problem is obtained for the single function ¢(w). The Wagner function [4]

4
@ =\ VEFTIE a (2.8)
ta

is used for this purpose.

The angle 7 /4 in the h plane will be the image of the flow domain in the ¢ plane, where the free bound-
ary is mapped onto the ray 0 < arg h(¢) = r/4, and the axis of symmetry is mapped onto the ray arg h(¢) =0
(see Appendix 1). Hence ’

BG(w)] = D'k, Dy>0 (2.9)

Therefore
S (B = (B (E) = ppsen ()

and, since the velocity of the apex of the free boundary ¢4 coincides with the vector {5, because of self-
similarity, then

Gt 2w () e (2.11)
0
(EA is the complex conjugate of £A).
Now F'(u) is eliminated from the boundary condition (2.4) by using the quadrature (2.11) and, conse~
quently, an integral equation for just the single function {'(u) is obtained on the negative part of the realaxis:

Re it (u) €708 — — Da?/ 11607’ ()} de} = 0 (2.12)

where £'(u) is understood to be the limit value of £'(w) as w—u. Itis convement to replace the complex
function {'(w) by the real function f(u) defined by the equality

fw=argfw+mn/2+y (2.13)
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To do this, we introduce the function

g (w) = —i In [iwv/~ ' ()] (2.14)

It follows from (2.13) and (2.2) that
Regqw)=f(u) foor —oo<<u<L0,Req(w)=0for 0<<u<<oo (2.15)

By using the Schwartz integral

]
J@w) == S Ldy 2.16)

the function q(w) is reproduced in the whole upper w half-plane, and then, ¢'(w) is
{'(w) = —iDw¥/mexp [J )], D>0 (2.17)

after which an integral equation for the function f(u)

df W) _ D (—w /" hexp[—J (u)]

m (2.18)
16D { [—w]™/ ™ exp [J ()] dus
0

is obtained as a result of passing to the limit as w —u in (2.17) according to the Sokhotskii theorem, and
substituting the limit value into (2.12).

The singular integral J is understood in the principal value sense. There follows from the definition
(2.13) and the asymptotic (2.5) that

f(—o0) = 0 (2.19)

After the function f(u) has been found from (2.17) to the accuracy of the constant ¢4, the mapping
function £(w), the equation of the free boundary

L) = La— D" ™ exp 17 (w) + of ()] ity (2.20)
5
and the velocity distribution
F'(w)=Ta+i 125 g wi™ " exp [— T (w))] dw, 2.21)
0

are reproduced.
The pressure p is determined from the Bernoulli law.

The desired function f(u) should be bounded because of the definition (2.13). Moreover, it is hence~
forth assumed that £(u) tends to zero as (— w¥ as u—~=, and its derivative i as (— w~&+1)| where
k > 0. Then, the integral J is finite for each value of w, and tends to zero as w——. Hence, the function
f(w) has a finite negative derivative for any value u = 0, and the asymptotics

PR ek Sy PO TL R SO Ul Sk

Ay~
8D% &y —3n Ty, i L [(armsmen (2.22)

are valid as u—=—,

Therefore, the assumptions made do not contradict (2.18) and k = (4y—37)/2rx. Since the derivative
FHu is negative for any value of u, then the function f(u) increases monotonely from 7£(0) to 0 as u varies
between 0 and ~; hence, it turns out that the value of £(0) should satisfy the inequality

y—n<fO<y—3,n (2.23)
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Otherwise, it will follow from the asymptotic J(w) as w —0 that either £(0) — © or f(u) =0, which is
inadmissible. The inequality (2.23) has a geometric meaning because the angle g between the axis of sym-
metry and the free boundary at its vertex is defined by the equality

p=v—7O (2.24)

To complete the formulation of the problem, it is necessary to find the value of the three, as yet unde-
termined, parameters (Dy, D, £A). Their values are determined by the given asymptotic at infinity. Since
F'(Z)—0 as { — =, then, it follows from (2.2)

Dg? ¢ )
ta=at § udl " oxp (— 7 ()1 duy (2.25)
0 -

According to (2.17) and (2.21), as w — «, the quantity £(w)— «, and

T L e ikt T (2.26)
PO~ o=
There follows from a comparison with the given asymptotic (2.7):
Dy | D* =16(a)* tci *cosay [ m (2.27)

It turns out that conditions (2.25) and (2.27) determine the flow completely, since upon compliance
with these conditions the graphs of the free boundary and the velocity distribution in the ¢n plane are inde-
pendent of specific values of Dy and D.

Indeed, let (Dy1, Dy) and (Dy, D) be two pairs of numbers satisfying condition (2.27). Then
Dy /Dy = (D /Dl)ml2 =k (2.28)

where k is some positive number.

If f(u) corresponds to (Dyi, Dy), then f(u/k) corresponds to (Dy, D). Hence, {(u) and F'(¢), correspond-
ing to (Dy, D) are defined by the formulas

u/k
E@)=Ca— 1D, { w"/"exp 1V (w) + i (w)) du, (2.29)

0

Dos® et

FQ)=Catigpgp S wi! " exp [— T (wy)] du, (2.30)
0

i.e., the shape of the free boundary and the velocity distribution did not varyinthe ¢ plane.Hence, Dy%/116 D?
can be taken equal to one. But then,

D = ¢, [(@)*  cosay]t/ @t/ D —4D (2.31)

3. Thus, the problem has been reduced to seeking the solution f(u) of the integral equation (2.18) with
the initial value (2.19). The function f(u) should be a bounded, differentiable, and monotonely decreasing
function of u

FO<f<O (3.1)

where

Py—an<fO)<y—3n (3.2)

The numerical solution of (2.18) was carried out by an iteration method for a series of values of y in
the range 0 < y < /2. Taking into account that the value obtained for f(0) in some iteration step can
emerge outside the admissible interval (3.2), the iteration process was constructed as follows. As a result
of substituting the function fp_; () in the right side of (2.18) in the n-th step, let the function fp,(u) be ob-
tained, and let
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&= fay () / foy (0) (3.3)

Then, the function

1O (1) foy (w) (3.4)
fn (u) - fn (0) -+ fn (0) u?

is obtained as the result of the n-th iteration, where

== f DO = — [ O) (2 —1)

Q) =t O) = =7 7 =7, Oz @.3)

If f,q (W is a bounded function of u in the interval —e < u < 0, which satisfies condition (3.2) and the
asymptotic (2.22), together with its derivative, then

¢ faa ()
oot () = — S 21 duy >0 (3.6)

as u—-—=. Hence, as u——x the functions f,4(u) and f,(u) together with their derivatives will satisfy the
asymptotic (2.22) by virtue of (2.18) and (3.5).

4. The function fp;{u) is determined by the equation

df,, (—w)@=3m /2% gyp 1 Ty (@]
= : (g () = 0) (¢1)

U

f(=v)y" " exp[J,_ )]dv
0

Since f,_,(0) = y—8, where 8 is some quantity satisfying the inequality % 7 < 8 < =, then as u—0

Jun (@) = (v — B)/ ) In(—m), dﬁ’f =~ A(—u)? " 00 (4.2)

asu——wx

dfp /A~ (— u)(h—an) faom s

For convenience in the numerical integration it is desirable to replace (4.1) by an equivalent equation
or system of equations, where the interval of integration would be finite, and there would be no divergent
integrals and infinite derivatives. This program was realized as follows.

The finite inferval of integration 0 > u > —« was reduced to the finite interval 0 < 7 < 1 by using the
change of variable

U= —1(1 —1)  (5=2n/UB—31), A=/} —1) (4-4)

In order to avoid divergent integrals, the Cauchy-type integral in the right side was represented as
follows:

0 0
1 fry (2) do 1 1 Fa1 O Frq OYIn(—w) (4.5)
E S vl—u = S (v —u) [f"—l(v)-— 1—1—2) ]d + a{l—u)

The integral in the denominator of (4.1) was computed by integrating a differential equation for some
function ¥, (u) related to the integral as follows:

S (— o)y " " exp [Ty ()] dv = (— )™ "y (w) (4.8)

a representation is connected with the fact that as u —0 the integral on the left tends to zero as
, and to infinity as u—=— .

Such
(= u) (r —uﬁﬁ/ fis
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TABLE 1 For smoothness of the computation as 7—1, the function fy; was

replaced by the function Ry in conformity with the formula
v 8 1A, km/sec
f =R [,1 + ( . u)(4(5—3n:)/27:] (4.7)
wm | g | e
5 2. . /
?:;3 2.9915 2,2988 After performing the manipulations (4.4)-(4.7), Eq. (4.1) was re-
;;g 3.0u08 3. oo placed by the equivalent system of equations
712 3.1260 7.5936
/2% 3.1384 11.6282 ax,, A—p “.8)
=]t o+ 5 '
dR i T L™ x Ii 1
-g%=—[5+7‘*1-—r][’_(”) 5 ]r—Hi—r)“s (4-9)
where

1
u /[ (u- 1 ¢{8(1— 31 (4 — o)~(A+D)
Loy (v) = (—u) AL l)lexp {__ ___R i8¢( 4+ (t—y) Pnaly) dy}

R Al (R R
n-— = | Rp. 1 gy M R, ©
() [ (U +y =) TR (1_4,)—1] (4.10)

The integral in L (1) is understood in the principal value sense, i.e.,

)
(B(1—y) +ryly™? (1 —y)
\ lv° (1—y)“]—r5(1_;);"1 P o= @1

81— A 31 (4 — )~ (D)
S{[( y) + yly (1 —9) W y— cp('c)} dy +<P(T)1n

A P—y =Pty

Integration of the system (4.8), (4.9) was carried out in two steps.
1. Equation (4.8) was integrated between 7=0and 7=1

Y (0) = — 7t (7t — B) L1 (0), % (1)=0 (4.12)

The point {t = 0, X = x(0)) is a saddle point, and the point {7 =1, x = 0} is a node for (4.1). Emergence
from the point (T = 0, x = x(0)) is accomplished according to the asymptotic

_ _ (e—pP8etg(1—1/8)x 4.13
=10 e e

the integral curve hence arrives at the point 7 =1, X = 0 in conformity with the asymptotic

Ym (W)= L ;n [1 + % t—m+cQ _.T)(n—r)/(B-'r)] A -7t ... 4.14)

where C is a constant obtained as a result of the integration.

2. After the function x,,(7) has been obtained, (4.9) was integrated between 7 =1 and 7=0. As 7 —1,
the function Ry (1) 0. For a better computation of the asymptotic (4.14) it is expedient to represent the
function Rpy(7) as follows:

R, (T)~2(n—7 (1—1)2{ C—t [1_4(;»-26)(47_315) Kﬁ[nxn(r)—(w—n)(i—r)]]

(~ —38) (4p — 3m) A —30)(1—7° A—r+... }(4-15)

The value of the function Ry(7) at T = 0 can be obtained only as a result of integration.

378



y — Equations (4.8) and (4.9) were integrated by the Euler method with

/P %r a conversion with a constant step h, and the integrals were computed by
the Gauss formula with n nodes. If turns out that h = 0.01 and n = 16

/ assure sufficient accuracy.

5. In conformity with (4.4) and (4.7}, the desired function became
i R(7). The iteration formulas (3.3)-(3.5) were transformed correspond-
7 b, ingly. A monotonely increasing function of 7, which satisfies the con-
ditions

N\
\\N
N

2 —_ .
N (—n < RO < 17, B gl —vp for -1 (5.1)

=
L// was taken as Ry(7).

The iterations were carried out until the inequality

!

M (n) = max | Ry (1) / Rpey (1) — 1 | < 0.001 5.2)
ig. 1
Fig was satisfied.
For the selected iteration method the function M(n) turned out to be monotonely decreasing and tend-
ing rapidly to zero. As the angle y decreased the number of iterations needed to satisfy (5.2) grew.

The function R(7) obtained was used to determine the profile of the free boundary in conformity with
the equations

E= 73 /n (1 — T)—l(n—Y)/ﬂgl’ 1 =1y + TSR/ 7 (- T>_)‘(R‘Y)/"n1
%%;1‘ = a(1)sin b () + E1e (v), ‘%‘ = — a(7)cos b(T) 4 ne (1) (5.3)
a{t)y=DI8(r— 1) /71— AL (7
b@W=R@U+1( -] —y

cM =P —md/at—(x —PA/n (1 —1)
The value of n, agreeing with the velocity at the vertex of the free boundary is determined according
to (2.25) by the formula -

1

1
n, = Dguu/lw/ ¥}/ (-4 exp [—;—S q;l(:) Zl (% + %) dflJ (%‘ + Ii‘{) dv
b 0

u=t1—7" u=1"(1 — 1), I=2n/@2B—na), k=x/(n—2y) (5.4)

_ Profiles of the free boundaries were determined for a series of values of the angle y. A table of the
appropriate values of the angles v, g, and the quantity 5, is presented above. Presented in the sketch are
graphs of the free boundaries in the £y plane defined in Section 1. The values of 5 A and the graphs of the
free boundaries correspond to the values £ = 0.1 and ¢y = 5.5 km/sec.

As follows from the table presented, as y — /2, the angle 8 is close to 0.9 7. On the other hand, for
a cavity aperture 2y = r the value of the angle is evidently g = 7/2. Therefore, an arbitrarily small devia~
tion of the angle v from =/2 will result in a finite change in the angle g.

The numerical solution of this problem was performed on the BESM-4 electronic computer.

A computation of shock incidence on a wedge cavity was performed by a difference method for the
value of y = 7/4 of the angle. The method developed by S. K. Godunov, A. V. Zabrodin, L. A. Pliner, and
G. P. Prokopov to compute two-dimensional nonstationary gasdynamics problems in domains with complex
geometry was used. The graph thus obtained for the free boundary is superposed on the figure by dashes
for comparison. The author is grateful to A. V. Zabrodin, L. A. Pliner, and G. P. Prokopov for useful
discussion of the results, and to N. V. Banichuk for programming and analysis.

APPENDIX

The angle
Oargh(D<n/4

is the image of the flow domain in the h plane.
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Indeed, it follows from (1.8) and (1.9) that the relationship
@F [ 4t ~ — sd¥s [ AT ‘ 1)

is valid along the free boundary, where s is the arc length measured from the vertex of the free boundary
¢ I5]. Since

df/ ds =8 @)
where g(s) is a real function, then, by virtue of (2.8), (1), and (2)

n@ =\ Vg )

]

It is assumed that the free boundary has a curvature of constant sign, namely g'(s) > 0. (For g'(s) <0
the asymptotic (2.7) cannot be satisfied.) Then, arg h(¢) = 7/4 on the free boundary by virtue of (3). Fur-
thermore, along the axis of symmetry £ =0

a2F >0
T =T lemo

Under the natural assumption that the velocity on the axis of symmetry is a monotone function of 7,
the sign of d°F/d¢? agrees with the sign obtained from the asymptotic (2.7)

&F [ dP = — 20 eos ay (—m)* PO for N — o0 )
Hence, along the axis of symmetry

N
h(g):iS VE&FTd2dn >0 5)
A

&

and h(¢) coincides with the real positive axis (hy = 0, h, = 0). Since %< a < 1, then it follows from (2.7)
that for ¢ — = the integral defining h(¢) diverges and h(¢) — = as {—w. It follows from the same asymp-
totic (2.7) that the image of the flow in the h plane will be the interior of the angle obtained.
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